Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Rev. biol. trop ; 64(4): 1469-1486, oct.-dic. 2016. tab, ilus
Article in Spanish | LILACS | ID: biblio-958227

ABSTRACT

Resumen:A pesar de la gran importancia ecológica, evolutiva y económica de los condrictios, su diversidad ha sido escasamente estudiada en México. En este estudio se describe la diversidad de especies de condrictios que se han registrado hasta el momento para México, la cual se compone de 214 especies (111 tiburones, 95 rayas y 8 quimeras) y representa el 17.3 % de las registradas a nivel mundial. Las familias con mayor diversidad de especies son Rajidae (14.5 %), Carcharhinidae (12.1 %), Pentanchidae, Triakidae y Urotrygonidae (5.1 %). En términos de su distribución geográfica, la diversidad del litoral del Pacífico mexicano contiene el 56.1 % del total de aquellas que habitan en las aguas marinas y salobres de México (120 spp., 62 géneros, 37 familias y 14 órdenes); porcentaje muy similar a las que habitan en el litoral del Atlántico con el 55.1 % de las especies (118 especies, 59 géneros, 35 familias y 13 órdenes). Las afinidades biogeográficas de la fauna de condrictios mexicanos son complejas, pues 19.7 % de las especies son circunglobales, 9.9 % trasatlánticas, 1.9 % transpacíficas y 9.4 % son endémicas de la zona económica exclusiva. Además, el 36.6 % de las especies son endémicas del Pacífico oriental, presentan mayor afinidad a la provincia de Cortés (27.7 %), seguida de la de California (20.7 %), Panamá (19.3 %), Galápagos (5.6 %) y Peruano-Chilena (8.9 %). Así mismo, el 33.3 % de las especies son endémicas del Atlántico occidental donde tienen mayor afinidad con la provincia Caribeña (31.9 %), seguido por la Caroliniana (24.4 %) y Brasileña (6.6 %).


Abstract:The diversity of chondrychthyans in Mexico is described. The fauna is composed by 214 species (111 sharks, 95 rays and 8 chimaeras) and represents 17.3 % of the total number of species recorded worldwide. The families with the highest diversity comprise: Rajidae (14.5 %), Carcharhinidae (12.1 %), Pentanchidae, Triakidae, and Urotrygonidae (5.1 %). In terms of geographical distribution, the diversity on the Mexican Pacific slope reaches up to 56.1 % of those species inhabiting Mexican marine and brackish waters (120 species, 62 genera, 37 families and 14 orders); the diversity in the Atlantic slope resulted similar to that on the Mexican Pacific with 55.1 % of the species (118 species, 59 genera, 35 families and 13 orders). The biogeographical affinities of the Mexican chondrychthyan fauna are complex with 19.7 % of the species being circumglobal, 9.9 % transatlantic, 1.9 % transpacific, and 9.4 % endemic to the exclusive economic zone. Additionally, 36.6 % of the species recorded so far are endemic to the Eastern Pacific coast where the species are similar to those found in the Cortez biogeographic province (27.7 %), followed by the Californian (20.7 %), Panamanian (19.3 %), Galapagos (5.6 %) and Peruvian-Chilean (8.9 %). Likewise, 33.3 % are endemic of the Atlantic coast, where species are similar to those found in the Caribbean province (31.9 %), followed by the Carolinean (24.4 %) and the Brazilian (6.6 %). Rev. Biol. Trop. 64 (4): 1469-1486. Epub 2016 December 01.


Subject(s)
Animals , Sharks/classification , Skates, Fish/classification , Chordata/classification , Biodiversity , Animal Distribution , Sharks/physiology , Species Specificity , Atlantic Ocean , Pacific Ocean , Skates, Fish/physiology , Chordata/physiology , Mexico
2.
Einstein (Säo Paulo) ; 13(1): 136-141, Jan-Mar/2015. tab
Article in English | LILACS | ID: lil-745889

ABSTRACT

Intestinal transplantation has shown exceptional growth over the past 10 years. At the end of the 1990’s, intestinal transplantation moved out of the experimental realm to become a routine practice in treating patients with severe complications related to total parenteral nutrition and intestinal failure. In the last years, several centers reported an increasing improvement in survival outcomes (about 80%), during the first 12 months after surgery, but long-term survival is still a challenge. Several advances led to clinical application of transplants. Immunosuppression involved in intestinal and multivisceral transplantation was the biggest gain for this procedure in the past decade due to tacrolimus, and new inducing drugs, mono- and polyclonal anti-lymphocyte antibodies. Despite the advancement of rigid immunosuppression protocols, rejection is still very frequent in the first 12 months, and can result in long-term graft loss. The future of intestinal transplantation and multivisceral transplantation appears promising. The major challenge is early recognition of acute rejection in order to prevent graft loss, opportunistic infections associated to complications, post-transplant lymphoproliferative disease and graft versus host disease; and consequently, improve results in the long run.


O transplante de intestino, ao redor do mundo, tem crescido de maneira sólida e consistente nos últimos 10 anos. No final da década de 1990, passou de um modelo experimental para uma prática clínica rotineira no tratamento dos pacientes com complicação severa da nutrição parenteral total com falência intestinal. Nos últimos anos, vários centros têm relatado uma crescente melhora nos resultados de sobrevida do transplante no primeiro ano (ao redor de 80%), porém, a longo prazo, ainda é desafiador. Diversos avanços permitiram sua aplicação clínica. O surgimento de novas drogas imunossupressoras, como o tacrolimus, além das drogas indutoras, os anticorpos antilinfocíticos mono e policlonal, nos últimos 10 anos, foi de suma importância para a melhora da sobrevida do transplante de intestino/multivisceral, mas, apesar dos protocolos bastante rígidos de imunossupressão, a rejeição é bastante frequente, podendo levar a altas taxas de perdas de enxerto a longo prazo. O futuro do transplante de intestino e multivisceral parece promissor. O grande desafio é reconhecer precocemente os casos de rejeição, prevenindo a perda do enxerto e melhorando os resultados a longo prazo, além das complicações causadas por infecções oportunistas, doenças linfoproliferativas pós-transplante e a doença do enxerto contra hospedeiro.


Subject(s)
Humans , Intestines/transplantation , Organ Transplantation/trends , Viscera/transplantation , Graft Survival , Liver Transplantation
3.
Acta biol. colomb ; 12(supl.1): 13-26, dic. 2007.
Article in English | LILACS | ID: lil-634857

ABSTRACT

Sessile colonial invertebrates often fuse with conspecifics to form chimeras. Chimerism represents an unequivocal instance of withinindividual selection where genetically different celllineages compete for representation in the somatic and gametic pools. We analyzed temporal and spatial variations in somatic celllineage composition of laboratoryestablished chimeras of the hydroid Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa). Using three clones with different allotypic specificities (i.e., two rejecting one another but fusing with a third one), we established two classes of twoway chimeras, a single threeway chimera class, and an incompatible interaction as control. Chimeras were sampled at five time intervals for a year. Celllineages in samples were identified by polyp fusibility assays against tester colonies of known fusibility. The cell lineages composing the chimeras showed a differential competitive ability, with one of them representing close to 80% by the end of the study. Rare celllineages stabilized at low frequencies but preserved their ability to gain somatic representation and to colonize distant parts of the chimera. This behavior characterizes cell parasites. As a consequence of the reproductive plasticity of most colonial invertebrates, celllineage variability may be transmitted to the offspring both sexually and asexually. Successful somatic competitors are expected to be preferentially transmitted asexually, whereas cell parasites would be preferentially transmitted sexually.


Los invertebrados coloniales y sésiles con frecuencia se fusionan con conespecíficos para formar quimeras. Estas quimeras son un ejemplo de selección natural actuando al interior del individuo en donde células genéticamente distintas compiten por acceso tanto a la línea somática como a la germinal. En este estudio se analizaron las variaciones temporal y espacial de linajes celulares somáticos en quimeras establecidas en el laboratorio del hidroide colonial Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa). Usando tres clones con distintas especificidades alotípicas (dos de ellas se rechazaban pero ambas se fusionaban a una tercera), se establecieron dos clases de biquimeras, una triquimera y una interacción incompatible como control. Muestras de tejido de quimeras se obtuvieron en cinco intervalos de tiempo durante 50 semanas. La identidad celular de cada muestra se determinó por ensayos de fusibilidad de pólipos con colonias estándar de fusibilidad conocida. Los distintos linajes celulares de cada quimera mostraron una habilidad competitiva diferencial, con una de ellas representando cerca del 80% de las quimeras hacia el final del estudio. Las líneas celulares con menor representación se estabilizaron a bajas frecuencias pero mantuvieron la capacidad de aumentar en frecuencia y de colonizar partes distantes en la quimera. Este comportamiento caracteriza los parásitos celulares. Como consecuencia de la plasticidad reproductiva de la mayoría de invertebrados coloniales, la variabilidad de los linajes celulares puede ser trasmitida a la descendencia tanto sexualmente como asexualmente. Linajes celulares somáticos con alta capacidad competitiva serían heredados asexualmente, mientras que los linajes celulares parásitos se transmitirían preferencialmente por reproducción sexual.

SELECTION OF CITATIONS
SEARCH DETAIL